Positive and Z-operators on closed convex cones

نویسنده

  • Michael Orlitzky
چکیده

Let K be a closed convex cone with dual K∗ in a finite-dimensional real Hilbert space V . A positive operator on K is a linear operator L on V such that L (K) ⊆ K. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. We say that L is a Z-operator on K if 〈L (x), s〉 ≤ 0 for all (x, s) ∈ K ×K such that 〈x, s〉 = 0. The Z-operators are generalizations of Z-matrices (whose off-diagonal elements are nonpositive) and they arise in dynamical systems, economics, game theory, and elsewhere. We connect the positive and Z-operators. This extends the work of Schneider, Vidyasagar, and Tam on proper cones, and reveals some interesting similarities between the two families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bishop-Phelps type Theorem for Normed Cones

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

متن کامل

Regularities and their relations to error bounds

In this paper, we mainly study various notions of regularity for a finite collection {C1, · · · , Cm} of closed convex subsets of a Banach space X and their relations with other fundamental concepts. We show that a proper lower semicontinuous function f on X has a Lipschitz error bound (resp., Υ-error bound) if and only if the pair {epi(f), X×{0}} of sets in the product space X × R is linearly ...

متن کامل

Lyapunov rank of polyhedral positive operators

IfK is a closed convex cone and if L is a linear operator having L (K) ⊆ K, then L is a positive operator on K and L preserves inequality with respect to K. The set of all positive operators on K is denoted by π (K). If K∗ is the dual of K, then its complementarity set is C (K) := {(x, s) ∈ K ×K | 〈x, s〉 = 0} . Such a set arises as optimality conditions in convex optimization, and a linear oper...

متن کامل

On Polar Cones and Differentiability in Reflexive Banach Spaces

Let $X$ be a  Banach  space, $Csubset X$  be  a  closed  convex  set  included  in  a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a  bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set  $C$,  so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1970